73 research outputs found

    Two-dimensional ultra-small angle X-ray scattering with grating interferometry

    Full text link
    It was recently established that the pixel-wise ultra-small angle x-ray distribution can be retrieved with grating interferometry. However, in these one dimensional approaches the contrast was limited to the direction orthogonal to the structure of the line gratings. Here, we demonstrate that sensitivity in two contrast directions can be achieved by using two pairs of crossed line gratings and by adapting scan procedures and data analysis accordingly. We demonstrate the retrieval of two-dimensional scattering distributions with grating interferometry, thus overcoming the previously reported limit of seven obtainable, complementary contrasts. In addition, we give further evidence for the superiority of the signal-to-noise ratio for the dark-field contrast, if a deconvolution-based instead of the standard analysis is utilized

    Thermal conductivity of gypsum plasterboard beyond dehydration and its correlation with the pore structure

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.Gypsum plasterboard is a material used in the building industry for its low weight (porosity 50-65%) and its high resistance to fire due to the endothermic dehydration taking place between 150 and 200Ā°C. Its thermal conductivity which is a decisive thermal property regarding reaction to fire drops by 50% of its initial value after dehydration due to the loss of water (20 mass %) but starts to rise again with rising temperature and reaches its initial value around 750Ā°C. The present study shows that this rise is not due to the increasing radiative or conductive heat transfer but to changes in the bimodal pore structure which leaves the overall structural dimensions nearly unchanged (dilatation of around 2%). Different methods such as mercury intrusion porosimetry, scanning electron microscopy and in-situ X-ray diffraction up to 1000Ā°C were carried out to investigate the correlation between pore structure and thermal conductivity of this material.dc201

    Durability of the Indian Kandla Grey sandstone under Western European climatic conditions

    Get PDF
    An increasing amount of imported natural building stones are being used in Western Europe, often as a replacement of more traditional, local building stones. Unlike for these traditional stones, which have been used under the prevailing climatic conditions in Western Europe, the durability of these imported stones is largely unknown. Therefore, it is essential to study their behaviour under these climatic conditions in order to predict their weathering resistance. The chemical and structural properties of these new building materials need to be determined and their behaviour under changing environmental conditions needs to be studied. When these materials are being used in Western Europe, they have to resist to significant mechanical stresses due to the imbibition of de-icing salt solutions. These de-icing salts are very frequently used during winter in Western Europe, while temperature fluctuates between freezing and thaw conditions. In this research, focus has been laid on the multi-disciplinary characterization of the compact Kandla Grey layered sandstone. This stone is recently frequently imported from India to Belgium. Besides traditional techniques, (according to European Standars for natural stone testing) highly advanced research techniques such as Āµ-XRF and HRXCT were used to characterize and monitor the changes under different external conditions such as freezing, thawing and salt crystallization. The results of this study demonstrate that the structural properties of the laminations inside Kandla Grey have an influence on the resistance of the stone to frost and salt weathering. Based on these results, it can be concluded that Kandla Grey can be vulnerable to these types of weathering under the current climatic conditions in Western Europe

    Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis

    Get PDF
    Enzyme engineering has allowed not only the de novo creation of active sites catalysing known biological reactions with rates close to diffusion limits, but also the generation of abiological sites performing new-to-nature reactions. However, the catalytic advantages of engineering multiple active sites into a single protein scaffold are yet to be established. Here, we report on proteins with two active sites of biological and/or abiological origin, for improved natural and non-natural catalysis. The approach increased the catalytic properties, such as enzyme efficiency, substrate scope, stereoselectivity and optimal temperature window, of an esterase containing two biological sites. Then, one of the active sites was metamorphosed into a metal-complex chemocatalytic site for oxidation and Friedelā€“Crafts alkylation reactions, facilitating synergistic chemo- and biocatalysis in a single protein. The transformations of 1-naphthyl acetate into 1,4-naphthoquinone (conversion approx. 100%) and vinyl crotonate and benzene into 3-phenylbutyric acid (ā‰„83%; e.e. >99.9%) were achieved in one pot with this artificial multifunctional metalloenzyme.This work was funded by grant ā€˜INMAREā€™ from the European Unionā€™s Horizon 2020 (grant agreement no. 634486), grants PCIN-2017-078 (within the Marine Biotechnology ERA-NET), CTQ2016-79138-R, BIO2016-76601-C3-1-R, BIO2016-76601-C3-3-R, BIO2017-85522-R, RTI2018-095166-B-I00 and RTI2018-095090-B-100 from the Ministerio de EconomĆ­a y Competitividad, the Ministerio de Ciencia, InnovaciĆ³n y Universidades (MCIU), the Agencia Estatal de InvestigaciĆ³n (AEI), the Fondo Europeo de Desarrollo Regional (FEDER) and the European Union (EU). P.N.G. and R.B. acknowledge the support of the UK Biotechnology and Biological Sciences Research Council (BBSRC; grant No. BB/M029085/1) and the Centre of Environmental Biotechnology Project and the Supercomputing Wales project, which are partly funded by the European Regional Development Fund (ERDF) through the Welsh Government. The authors gratefully acknowledge the financial support provided by the ERDF. C.C. thanks the Ministerio de EconomĆ­a y Competitividad and FEDER for a Ph.D. fellowship (Grant BES-2015-073829). J.L.G.-A. thanks the support of the Spanish Ministry of Education, Culture and Sport through the National Program FPU (FPU17/00044). I.C.-R. thanks the Regional Government of Madrid for a fellowship (PEJ_BIO_AI_1201). The authors would like to acknowledge S. Ciordia and M. C. Mena for MALDI-TOF/TOF analysis. We thank the staff of both the European Synchrotron Radiation Facility (ESRF, Grenoble, France), for providing access and technical assistance at beamline ID30A-1/MASSIf-1, and the Synchrotron Radiation Source at Alba (Barcelona, Spain), for assistance at BL13-XALOC beamline. The authors would also like to acknowledge M. J. Vicente and M. A. Pascual at the Servicio Interdepartamental de InvestigaciĆ³n (SIDI) of the Autonomous University of Madrid for the ESI-MS analyses

    Phosphoinositide-binding interface proteins involved in shaping cell membranes

    Get PDF
    The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes

    Functional analysis of DNA methylation of the PACSIN1

    No full text

    High resolution, large field of view x-ray differential phase contrast imaging on a compact setup

    Full text link
    X-ray grating interferometry is a well established technique to perform differential phase contrast imaging on conventional x-ray tubes. So far, the application of this technique in commercial micro computed tomography scanners has remained a major challenge due to the compact setup geometry. In this letter, we report on the design of a compact imaging setup using a microfocus source. Due to the extreme wave front curvature, the gratings are fabricated on a flexible substrate, enabling precise cylindrical shaping. A laboratory setup and a modified SCANCO Ī¼CT100 scanner have been built, allowing high resolution and large field of view imaging. Ā© 2011 American Institute of Physics
    • ā€¦
    corecore